Magnetic Nanobeads for the Delivery of Therapeautic Nucleic Acids to the Heart

Wenzhong Li¹, Nan Ma¹, Leelee Ong¹, Christof Stamm¹, Alexander Kaminski¹, Peter Lorenz², Brigitte M. Pützer³, Gustav Steinhoff¹

Department of Cardiac Surgery¹, Department of Immunology², Department of Vectorology and Experimental Gene Therapy³, University Rostock, Germany

Statement of Purpose: The retention problem of vectorgene complexes limits the gene therapy in cardiovascular system. We conjugated polymer vector-gene complexes to magnetic nanobeads (MNB) and employed external magnetic fields to guide MNB/DNA complexes to the target area and induce localized therapeautic nucleic acids expression after intravenous administration.

Methods: The poly-ethyleneimine vector (PEI) was conjugated with MNB using a Sulfo-NHS-LC-Biotin linker. Stability of the MNB/PEI/DNA complex was evaluated by DNase I protection assay. Under magnetic field stimulation, in vitro transfection efficacy of MNB/PEI/DNA was assessed in 4 different cell lines and compared with unconjugated PEI/DNA. In vivo, MNB/PEI/Bcl-2 complexes were injected in the tail vein of mice (n=12) and epicardial magnets were employed to trap circulating MNB/PEI/DNA complexes. Transfection efficacy of therapeautic nucleic acid Bcl-2 was assessed in the hearts by immunostaining.

Results / Discussion: The MNB/PEI/DNA complexes were very stable, biocompatible, and non-toxic. MNB/PEI/DNA complexes had a 36- to 85-fold higher transfection efficiency in magnetic fields compared with PEI/DNA complexes alone. In vivo, the epicardial magnets effectively trapped MNB/PEI/DNA complexes in the heart, resulting in effetive expession of therapeautic nucleic acid Bcl-2.

Conclusions: Magnetic nanobeads conjugated with nonviral polymer vector-gene complexes could induce therapeautic gene expression under magnetic field stimulation. This technique could greatly enhance the prospects of gene therapy in the cardiovascular system.