MPEG-PCL diblock copolymers as an in situ gel forming drug carrier Hoon Hyun^{1,2}, Yu Han Kim¹, Jung Won Lee^{1,2}, In Bum Song^{1,2}, Moon Suk Kim^{1,*}, Gilson Khang², Kinam Park³, Hai Bang Lee¹ ¹Medicinal Science Division, Korea Research Institute of Chemical Technology, ²BK-21 Polymer BIN Fusion Research Team, Chonbuk National University, ³Purdue University, Departments of Biomedical Engineering and Pharmaceutics **Statement of Purpose:** During the last decade, injectable polymers such as PoloxamersTM and PluronicsTM have attracted considerable attention as candidate materials for biomedical applications such as polymeric drug carriers, implants, and other medical devices. Aqueous solutions of these block copolymers undergo a reversible sol-gel transition as a function of temperature; this transition can be exploited for applications in which the solution is injected into a human or animal in the sol state to become a gel at body temperature. In the present study we prepared MPEG-PCL diblock copolymer and examined whether aqueous solution of this copolymer could undergo sol-to-gel phase transition under physiological conditions. The efficacy of the thermo-responsive MPEG-PCL diblock copolymer for use as an in situ injectable gel-forming carrier studied the in vitro release of a model protein, BSA-FITC, loaded into a MPEG-PCL diblock copolymer carrier. **Methods:** MPEG-PCL diblock copolymer (MW, ca. 750-2,500) were synthesized via the polymerization of ε-caprolactone using the terminal alcohol of MPEG as an initiator in the presence of HCl•Et2O as a monomer activator. Five-milliliter solution of diblock copolymer in PBS was prepared in 10-ml vial and then dissolved by immersion in water at 80 °C. The solution was then left overnight in a refrigerator. Then, to determine their phase transition behavior, the solution was subjected to viscosity measurements as a function of temperature. For the protein release experiment, 1 wt% BSA-FITC was added to the diblock copolymer solution at room temperature and the mixture was gently mixed. A diblock copolymer solution containing BSA-FITC was incubated at 37 °C to form a gel. Then, 10 ml of PBS was added to the gel, and the vial was shaken at 100 rpm and 37 °C. At specified sample collection times, 1 mL of solution was removed from the vial and 1 mL of fresh PBS at 37 °C was added to the vial. Fluorescence spectroscopy was immediately performed on the removed solution. To study the formation of gel in vivo, we made MPEG-PCL copolymer gel in rat. **Results/Discussion:** At room temperature, the MPEG–PCL diblock copolymer solution was a translucent emulsion. Figure 1 shows the viscosity versus temperature curve for the MPEG-PCL diblock copolymer solution. As the temperature of the polymer solution was increased from room temperature, the viscosity of MPEG–PCL diblock copolymer solution starts increasing at 28 °C and underwent a sol-to-gel phase transition. Figure 1. Viscosity versus temperature curve for MPEG-PCL diblock copolymer at 20 wt% concentration. For in vitro release experiment, the BSA-FITC was added into the MPEG-PCL copolymer solution. The MPEG-PCL diblock copolymer gel exhibited prolonged release of BSA-FITC above 20 days. When the MPEG-PCL copolymer was injected at room temperature into live SD rats, they became gel almost immediately after injection. The injected MPEG-PCL gel was maintained at the injection site for the full 4-week experimental observation period. The MPEG-PCL gel was found to retain its original shape, and remain within the injected site with no signs of inflammation at the point of injection. Conclusions: We prepared a MPEG-PCL diblock copolymer and examined its behavior in aqueous solution. Experiments examining the release of BSA-FITC from MPEG-PCL diblock copolymer gels under in vitro condition showed that the protein was released above 20 days. When BSA-loaded diblock copolymer solution at room temperature was subcutaneously injected into rats, it immediately became gels. We confirmed that MPEG-PCL diblock copolymer solution is thermo-responsive material. **Acknowledgment:** This work was supported by a grant from KMOHW (grant no A050082).