Modulating Phosphate Metabolism for Periodontal Regeneration <u>Kanako J. Nagatomo¹</u>, Brian L. Foster¹, Thanaphum Osathanon¹, Emily Y. Chu¹, Kevin A. Tompkins¹, Hanson Fong¹, Daisy Matsa-Dunn¹, Catherine Guenther², David M. Kingsley², R.B. Rutherford¹, Cecilia M. Giachelli¹, Martha J. Somerman¹ ¹University of Washington, Seattle, Washington, ²Stanford University, La Jolla, California **Statement of Purpose:** Phosphate (P_i) and pyrophosphate (PP_i) levels are essential for normal development of mineralized tissues. Pi compounds with calcium ions to form hydroxyapatite, while PP_i is a potent inhibitor of hydroxyapatite mineral growth. Physiological mineralization and ectopic calcification is influenced by the PP_i /P_i ratio [1]. Local concentration of PP_i in the extracellular space is controlled by enzymes and transporters including tissue nonspecific alkaline phosphatase (TNAP), which reduces tissue PP_i generates P_i, and factors increasing extracellular PP_i, e.g. progressive ankylosis protein (ANK), and ectonucleotide pyrophosphate phosphodiesterase 1 (NPP1). characterized developmental consequences of PP_i and P_i dysregulation on tooth root development. Based on our and others' observations that altered PP_i causes marked cementum phenotypes [2, 3], we hypothesized that regulation of PP_i/P_i levels might encourage cementum repair/regeneration. To test our hypothesis, we used a mouse calvarial defect model. **Methods:** Tooth root development of mutant and knockout (KO) mouse models with altered P_i or PP_i metabolism was characterized by histology, immunohistochemistry, *in situ* hybridization, electron microscopy, and nanoindentation. We employed a method to immobilize TNAP (ALP) on microporous nanofibrous fibrin scaffolds (FS). FS were fabricated using sphere-templating methods. ALP was covalently immobilized on FS using 1-EDC [4]. Critical size defects (5mm) were made in calvaria of 5 wk old mice (n=12). Defects were treated with FS alone, ALP/FS, or left empty, then examined by histology and microCT 45days following surgery. **Results:** Cementum was most profoundly affected by alterations in local PP_i levels, while altered P_i levels led to more subtle cementum phenotypes [5, 6]. Decreased PP_i (decreased PP_i/P_i), as in the *Ank* KO mouse, increased cementum formation (Fig. 1). In an attempt to recapitulate developmental conditions encouraging cementogenesis, we added ALP/FS to calvarial defects to modulate local PP_i/P_i. After 45 days, the immobilized rhALP/FS resulted in greater bone formation within the defect area compared to empty defect control (Fig. 2). **Conclusion:** Cementum is sensitive to PP_i dysregulation (Fig. 3). Immobilized ALP/FS and other biomaterials approaches to modulate PP_i/P_i are candidates for regenerating cementum, bone, and other mineralized tissues. Fig. 1. Histological analysis of WT and *Ank* KO molar at 45dpc. d: dentin, c: cementum, p: periodontal ligament, b: alveolar bone. Fig. 2. Representative micro CT images for mouse calvarial defects 45 days after surgery[4]. Fig. 3. PP_i/P_i ratio regulates cementum formation [2]. **References:** [1] Murshed et al., Genes Dev, 2005, 19(9):1093-104. - [2] Nociti et al., J Dent Res, 2002, 81(12):817-821. - [3]Beertsen et al., J Dent Res, 1999, 78(6):1221-9. - [4] Osathanon et al., Biomat, 2009, 30: 4513-4521. - [5] Fong et al., J Periodontol, 2009, 80(8): 1348-54. - [6] Chu et al., Anat Rec, In review. **Acknowledgements:** This study was funded by NIH/NIDCR DE15109 (MJS).